вторник, 17 декабря 2019 г.

Глубинная сибирская бактерия



В Восточной Сибири на глубине двух километров нашли бактерию, которая может жить без кислорода и солнечного света.

Исследователи из Томского государственного университета вместе с коллегами из Федерального исследовательского центра «Фундаментальные основы биотехнологии» РАН описывают в The ISME Journal бактерию Desulforudis audaxviator, выловленную в Восточной Сибири из подземных вод на глубине 2 км. Сразу стоит сказать, что о существовании этой бактерии знали и раньше: около 10 лет назад следы её ДНК обнаружили в образцах, добытых из шахтных вод в Южной Африке, которые подняли с глубины в 1,5–3 км. Так случается довольно часто: в мешанине бактериальной ДНК вдруг обнаруживаются последовательности, не принадлежащие ни одной из известных бактерий, но при этом явно относящиеся к геному одного и того же организма. Саму бактерию удаётся увидеть далеко не всегда.

С тех пор ДНК от Desulforudis audaxviator находили на территории США и Финляндии, так что, строго говоря, ничего специфически сибирского в ней нет. Но вот именно саму бактерию, в виде полноценной клетки, удалось поймать только сейчас, во глубине подземных сибирских вод. D. audaxviator обходится без солнечного света и без кислорода – в общем, не такая уж редкость среди микроорганизмов, которые освоили самые разные способы получения энергии.

Суть энергетических реакций в клетках состоит в том, чтобы одно вещество окислить другим, а энергию, которая при этом выделяется, запасти в удобной для организма форме. D. audaxviator относится к сульфат-редуцирующим бактериям: в качестве окислителя они используют сульфат-ионы, на который передают электроны, отобранные от разных субстратов.

 Сама D. audaxviator оказалась в этом смысле всеядной – в лабораторных экспериментах она окисляла и сахара, и спирт, и многое другое, но любимой едой для неё был водород, как и для многих других сульфатредуцирующих бактерий и архей. Но, в отличие от большинства «коллег по метаболизму», D. audaxviator оказалась вполне терпима к кислороду, который обычно губителен для микробов, живущих глубоко под землёй или под водой. (Сульфатредуцирующих микробов часто находят рядом с горячими источниками на океанском дне.)

Очевидно, благодаря толерантности к кислороду бактерия может путешествовать по воздуху – иначе она не могла бы оказаться в столь разных местах, как сибирские подземные воды и южноамериканские шахты, которые геологически никогда не соседствовали. В клетках D. audaxviator есть пузырьки-вакуоли, заполненные газом, которые могли бы как-то помогать им подниматься в воздух. Впрочем, огромная масса бактерий странствует без всяких воздушных пузырей (не так давно мы писали о том, что бактерии вполне способны перелетать с континента на континент), так что и D. audaxviator могла бы переселяться, например, в аэрозольных каплях, разносимых потоками воздуха.

То, что бактерии могут жить на глубине в несколько километров, в общем, не новость: в конце прошлого года мы рассказывали о подземной биосфере, которая вместе со своей средой обитания превосходит объём Мирового океана. Но коль скоро подземные жители столь многочисленны, тем интереснее их изучать: во-первых, их способность жить в таких своеобразных условиях может пригодиться в каких-то биотехнологических разработках, а во-вторых, мы больше узнаём о жизни в целом – и кто знает, не найдём ли мы на других планетах таких же микробов, умеющих обходится без света и кислорода.

Автор: Кирилл Стасевич

Источник: Наука и жизнь (nkj.ru)

Злокачественные опухоли могут наследоваться без мутаций


Изменения в отцовской ДНК сказываются на здоровье детей, даже если сама мутация детям не передаётся.

Известно, что предрасположенность к онкологическим заболеваниям может передаваться из поколения в поколение. Злокачественные опухоли появляются, когда некоторые гены начинают работать не так, как надо, а работать не так, как надо, эти гены часто начинают из-за мутаций – то есть из-за изменений в генетических буквах, из которых состоит ДНК. Мутация, появившись в половых клетках матери или отца, перейдёт к их детям; соответственно, вероятность болезни у детей  повысится по сравнению с тем случаем, как если бы мутации не было.

Однако предрасположенность к раку может передаваться и без мутаций. Исследователи из Уайтхедовского института вместе с коллегами из других научных центров США экспериментировали с мышами, у которых отключали ген Kdm6a – он кодирует фермент, который занимается химическими модификациями гистонов. А гистоны, как мы знаем, это белки-упаковщики ДНК, и от гистонов во многом зависит, какой участок ДНК будет сильно упакован и потому неактивен, а какой, наоборот, будет доступен для считывания генетической информации. 
Работа самих гистонов зависит от химических модификаций, в частности, от метильных групп, которые на них сажают и снимают разные ферменты. Kdm6a – как раз из ферментов, снимающих метилирование. В целом такая регуляция активности генов через упаковку ДНК называется эпигенетической: она не затрагивает сам генетический текст, то есть происходит как бы поверх него. (Стоит уточнить, что эпигенетических механизмов регуляции есть несколько, и модификации гистонов – лишь один из них.)

Ген Kdm6a находится в Х-хромосоме. Его отключали  так, чтобы он не работал в клетках, из которых получаются сперматозоиды. Дальше самцов с отключённым Kdm6a скрещивали с обычными самками, и смотрели, что получится с их сыновьями. Почему особое внимание было именно сыновьям? Потому что у них никакой мутации в Kdm6a не было: ведь мыши-мальчики получались, когда яйцеклетку (а все яйцеклетки, на всякий случай напомним, содержат одну Х-хромосому) оплодотворял сперматозоид с Y-хромосомой; мутантный Kdm6a у самцов был в других сперматозоидах, которым в процессе созревания достался Х. Но влияние мутации было видно на гистонах во всех сперматозоидах – их гистоны были очень сильно метилированы.

В статье в eLife говорится, что самцы мужского пола в потомстве стали часто умирать всего через год после появления на свет. И связано это было с большим количеством опухолей, которые у них начали расти. (Опухоли появлялись и у обычных мышей от обычных отцов, но не в таком количестве и не так рано.) Во втором поколении (то есть у внуков самцов с отключённым Kdm6a) опухолевый эффект проявлялся ещё сильнее.

Сравнивая модификации гистонов, связанных с разными участками ДНК, исследователи увидели, что у отцов с выключенным Kdm6a и у их детей  многие эпигенетические метки распределены одинаково. Более того, изменения в эпигенетических метках сильнее всего касались тех зон ДНК, где были гены, влияющие на появление и рост опухолей. Сама мутация в Kdm6a, напомним, от родителей к детям не переходила, но зато по наследству переходили её последствия – то есть можно сказать, что предрасположенность к злокачественным опухолям передавалась без передачи мутации. Действительно, эпигенетическая настройка генов перешла по наследству от отцов к сыновьям, и гены стали работать в пользу онкологических болезней.

Передача эпигенетических инструкций по наследству сейчас бурно исследуется. Не так давно считалось, что у зверей родительская «эпигенетика» от родителей к потомкам не передаётся. Но, как было сказано выше, эпигенетических механизмов есть несколько, и один из них как будто действительно теряет силу в созревающих половых клетках. Но есть и другие механизмы эпигенетической регуляции, которые продолжают работать и в половых клетках, и, видимо, в зародыше. Мы как-то писали о том, что в сперматозоидах остаются особые регуляторные РНК, которые участвуют в одном из эпигенетических механизмов, и что с помощью таких РНК детям может передаваться стресс родителей. Видимо, и гистоновый механизм тоже преодолевает межпоколенческую границу.

Новые данные не особо утешительны, если вспомнить, насколько легко можно вмешаться в эти самые эпигенетические механизмы – здесь можно вспомнить сравнительно недавнюю новость, что и привычный никотин влияет на ДНК через поколения. С другой стороны, сейчас активно ищут лекарства, которые тормозили бы на онкологические процессы именно на эпигенетическом уровне.

Автор: Кирилл Стасевич

Источник: Наука и жизнь (nkj.ru)

Эффективность физических упражнений зависит от времени суток


Дальнейшие исследования с людьми помогут выяснить, когда нам лучше всего заниматься спортом – по утрам или по вечерам.

От биологических часов в нашем организме зависит очень многое, в том числе и обмен веществ – по некоторым оценкам, как минимум половина метаболических процессов подчиняется суточным ритмам. Но в таком случае обмен веществ должен по-разному реагировать на физические упражнения в зависимости от того, когда мы ими занимаемся.

Исследователи из Вейцмановского института наблюдали за мышами, заставляя их бегать на беговой дорожке, которая двигалась в разных режимах (мыши – животные ночные, и на беговой дорожке они бегали, когда естественным образом бодрствовали). Оказалось, что в целом мыши лучше справляются с физической нагрузкой в  вечерние часы, к концу своего мышиного дня. Но эта разница исчезала, если у мышей отключали один из генов, регулирующих суточные ритмы.

В статье в Cell Metabolism говорится, что во время «вечернего фитнеса» у мышей в мышцах становилось больше молекулы ZMP – рибонуклеотида 5-аминоимидазол-4-карбоксамида. Известно, что ZMP стимулирует реакции гликолиза – бескислородного получения энергии, и расщепления жирных кислот. (У ZMP есть синтетический аналог, AICAR, который спортсмены принимают, чтобы повысить выносливость, и который в официальных соревнованиях запрещён как допинг.) То есть благодаря «вечернему» более высокому уровню ZMP, мышцы получали больше энергии, и мыши демонстрировали лучшие результаты на беговой дорожке.

Мышами дело не ограничилось: исследователи привели в лабораторию двенадцать добровольцев, и оказалось, что и у людей есть похожая закономерность – если они занимались физическими упражнениями вечером, организм расходовал меньше кислорода. А это значит, что мышцы работали с большей эффективностью.

Похожие результаты получили сотрудники Калифорнийского университета в Ирвайне, тоже опубликовавшие статью в Cell Metabolism. Они анализировали вещества, образующиеся во время обмена веществ в мышцах, и активность разных генов, которые имеют отношение к гликолизу и расщеплению жира. Один из генов, который влияет на энергетические реакции, кодирует белок HIF-1α, который в зависимости от уровня кислорода в тканях регулирует работу других метаболических генов. Оказалось, что активность самого HIF-1α меняется в зависимости от времени суток, и, соответственно, по-разному происходит обмен веществ в мышцах.

Распространять полученные результаты на людей было бы преждевременно – всё-таки эксперименты ставили преимущественно на мышах, которые живут иначе, чем люди, и у которых не так много хронотипов (тогда как у людей есть масса разновидностей и «сов», и «жаворонков»). Впрочем, учитывая медицинскую актуальность темы, можно предположить, что в скором времени мы узнаем, когда лучше ходить в фитнесс-центр, чтобы эффективнее сжигать жир и эффективнее тренировать мышцы.



По материалам MedicalXpress.

Автор: Кирилл Стасевич

Источник: Наука и жизнь (nkj.ru)